MATH 821, Spring 2013, Lecture 7

Karen Yeats
(Scribe: Amy Wiebe)

February 5, 2013

Recall from Lecture 6:
Proposition 1. Suppose $T(x) \in \mathbb{R}^{\geq 0}[[x]], E(x, y) \in \mathbb{R}^{\geq 0}[[x, y]]$ with

- $E(0,0)=0$,
- E has a term of degree >1 in y,
- $\frac{d}{d x} E(x, T(x)) \neq 0$ (so since coefficients are nonnegative, in particular $\frac{d}{d x} E(\rho, T(\rho)) \neq 0$)
and $T(x)=E(x, T(x))$, as formal power series. Let ρ be the radius of convergence of $T(x)$ and suppose $0<\rho<\infty, T(\rho)<\infty$ and $\exists \epsilon$ such that $E(\rho+\epsilon, T(\rho)+\epsilon)<\infty$. Then \exists functions $A(x), B(x)$ analytic at 0 such that

$$
T(x)=A(\rho-x)+B(\rho-x) \sqrt{\rho-x}
$$

for $|x|<\rho, x$ near ρ.

1 Proof of the square root result

Theorem 2 (Weierstraß preparation). Let $f: \stackrel{x}{\mathbb{C}} \times \stackrel{y}{\mathbb{C}} \rightarrow \mathbb{C}$ and let f be analytic in a neighbourhood of (0, 0). Suppose

$$
f(0,0)=\frac{d}{d y} f(0,0)=\cdots=\frac{d^{k-1}}{d y^{k-1}} f(0,0)=0, \text { but } \frac{d^{k}}{d y^{k}} f(0,0) \neq 0
$$

Then in a neighbourhood of $(0,0)$ we can uniquely write $f(x, y)=p(x, y) r(x, y)$ where

- p, r analytic in the neighbourhood
- r is nowhere 0 in the neighbourhood
- $p(x, y)=p_{0}(x)+p_{1}(x) y+\cdots+p_{k-1} y^{k-1}+y^{k}$ (a Weierstraß polynomial) with the p_{i} analytic in a neighbourhood of 0 and $p_{i}(0)=0$

Sketch of proof. (For details see analysis text.)
Unique by expanding series.
By conditions on f,

- $\frac{d^{k}}{d y^{k}} f(x, y)$ is nonzero at $(0,0)$, so there exists a small neighbourhood of $(0,0)$ where it is nowhere 0 ,
- $f(0, y)$ has a root at 0 of multiplicity k, so for fixed x_{0} sufficiently near $0, f\left(x_{0}, y\right)$ has k roots (maybe distinct)

So there exists a Weierstraß polynomial with the same root structure, call it $p(x, y)$. Then

$$
\frac{f(x, y)}{p(x, y)}
$$

is analytic and nowhere 0 in a neighbourhood of $(0,0)$.
Corollary 3 ($k=1$ in Weierstraß preparation, Implicit function theorem). Let $f: \stackrel{x}{\mathbb{C}} \times \stackrel{y}{\mathbb{C}} \rightarrow \mathbb{C}$ and let f be analytic in a neighbourhood of $(0,0)$. Suppose

$$
f(0,0)=0, \text { but } \frac{d}{d y} f(0,0) \neq 0
$$

Then there exists a neighbourhood of 0 in \mathbb{C} and a function $g(x)$ analytic on the neighbourhood with
(1) $f(x, g(x))=0$, for all x in the neighbourhood
(2) if $f(x, y)=0$ for x, y sufficiently close to 0 , then $y=g(x)$.

Proof. On the neighbourhood of $(0,0)$, by Weierstraß preparation, we get

$$
f(x, y)=\left(p_{0}(x)+y\right) r(x, y)
$$

Now $r(x, y)$ is nowhere 0 on the neighbourhood, so $f(x, y)=0$ if and only if $-p_{0}(x)=y$, so $g(x)=-p_{0}(x)$ will work.

Corollary $4(k=2$ in Weierstraß preparation). Let $f: \stackrel{x}{\mathbb{C}} \times \stackrel{y}{\mathbb{C}} \rightarrow \mathbb{C}$ and let f be analytic in a neighbourhood of (0,0). Suppose

$$
f(0,0)=\frac{d}{d y} f(0,0)=0, \text { but } \frac{d^{2}}{d y^{2}} f(0,0) \neq 0
$$

Then in a neighbourhood of $(0,0)$,

$$
f(x, y)=\left(p_{0}(x)+p_{1}(x) y+y^{2}\right) r(x, y)
$$

with p_{i} analytic in neighbourhood and $r(x, y)$ nowhere 0 in the neighbourhood.

Now we can prove Proposition 1:
Proof of Proposition 1. As $\exists \epsilon$ with $E(\rho+\epsilon, T(\rho)+\epsilon)<\infty$ and we have nonnegative coefficients, we can choose a neighbourhood \mathcal{U} of $(\rho, T(\rho))$ such that E is analytic on \mathcal{U}.

Let

$$
F(x, y)=y-E(x, y)
$$

Then F is analytic on \mathcal{U} and $F(x, T(x))=T(x)-E(x, T(x))=0$ for $|x|<\rho$. By Pringsheim's Theorem, ρ is a singularity so the hypotheses of the implicit function theorem must be false at $(\rho, T(\rho))$; thus we must have $\frac{d}{d y} F(\rho, T(\rho))=0$.

$$
\frac{d}{d y} F(x, y)=1-\frac{d}{d y} E(x, y)
$$

We want to check that the hypotheses of Corollary 4 are satisfied:

$$
\frac{d^{2}}{d y^{2}} F(x, y)=-\frac{d^{2}}{d y^{2}} E(x, y)<0
$$

for $x, y>0$ (since we have nonnegative coefficients and at least one y^{2} term), so in particular,

$$
\frac{d^{2}}{d y^{2}} F(\rho, T(\rho))<0
$$

thus

$$
F(x, y)=\underbrace{\left(p_{0}(x)+p_{1}(x) y+y^{2}\right)}_{P(x, y)} r(x, y)
$$

with p_{i} analytic not 0 at ρ and $r(x, y)$ analytic, nowhere 0 in a neighbourhood of $(\rho, T(\rho))$.
Let $D(x)$ be the discriminant of $P(x, y)$

$$
D(x)=p_{1}(x)^{2}-4 p_{0}(x)
$$

Next we want to check $D(\rho)=0, \frac{d}{d x} D(\rho) \neq 0$. To see these, just calculate: $F(x, T(x))=0$, but $r(x, T(x)) \neq 0$ for x near ρ, so

$$
\begin{equation*}
p_{0}(\rho)+p_{1}(\rho) T(\rho)+T(\rho)^{2}=0 \tag{1}
\end{equation*}
$$

Also

$$
\begin{aligned}
0 & =\frac{d}{d y} F(\rho, T(\rho)) \\
& =\left(\frac{d}{d y} P(\rho, T(\rho))\right) \underbrace{r(\rho, T(\rho))}_{\neq 0}+\underbrace{P(\rho, T(\rho)) \frac{d}{d y} r(\rho, T(\rho))} 0 \\
\Rightarrow 0 & =\frac{d}{d y} P(\rho, T(\rho)) \\
& =p_{1}(\rho)+2 T(\rho)
\end{aligned}
$$

and subbing into (1) gives

$$
0=p_{0}(\rho)-\frac{p_{1}^{2}(\rho)}{2}+\frac{p_{1}^{2}(\rho)}{4}=p_{0}(\rho)-\frac{p_{1}^{2}(\rho)}{4}=-\frac{D(\rho)}{4}
$$

so $D(\rho)=0$. Now

$$
\begin{aligned}
\frac{d}{d x} D(\rho) & =2 p_{1}(\rho) \frac{d}{d x} p_{1}(\rho)-4 \frac{d}{d x} p_{0}(\rho) \\
& =-4\left(T(\rho) \frac{d}{d x} p_{1}(\rho)+\frac{d}{d x} p_{0}(\rho)\right)
\end{aligned}
$$

$$
\frac{d}{d x} F(\rho, T(\rho))=-\frac{d}{d x} E(\rho, T(\rho))<0
$$

and

$$
\frac{d}{d x} F(\rho, T(\rho))=\left(\frac{d}{d x} p_{0}(\rho)+T(\rho) \frac{d}{d x} p_{1}(\rho)\right) r(\rho, T(\rho))+0, \quad \text { since } P(\rho, T(\rho))=0
$$

So

$$
\frac{d}{d x} D(\rho)=\frac{4 \frac{d}{d x} E(\rho, T(\rho))}{r(\rho, T(\rho))} \neq 0
$$

Thus $D(\rho)=0, \frac{d}{d x} D(\rho) \neq 0$.
Returning to the previous calculation we know

$$
p_{0}(x)+p_{1}(x) T(x)+T(x)^{2}=0
$$

for x near ρ, so

$$
T(x)=-\frac{p_{1}(x)}{2}+\frac{1}{2} \sqrt{D(x)}
$$

Since $D(\rho)=0$ we can expand $\sqrt{D(x)}$ around ρ to get

$$
D(x)=\sum_{k \geq 1} d_{k}(\rho-x)^{k}
$$

and since $\frac{d}{d x} D(\rho) \neq 0$ we know $d_{1} \neq 0$. So

$$
T(x)=\underbrace{-\frac{1}{2} p_{1}(x)}_{A(\rho-x)}+\underbrace{\left(\frac{1}{2} \sqrt{d_{1}} \sqrt{1+\sum_{k \geq 1} \frac{d_{k+1}}{d_{1}}(\rho-x)^{k}}\right)}_{B(\rho-x)} \sqrt{\rho-x}
$$

for x near ρ.

2 Cauchy's Theorems

Definition. Let Ω be a connected open subset of \mathbb{C}. A path is a function $\gamma:[0,1] \rightarrow \Omega$.

Definition. Two paths $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow \Omega$ with $\gamma_{1}(0)=\gamma_{2}(0), \gamma_{1}(1)=\gamma_{2}(1)$ are homotopic (above right) if $\exists h(x, y)$ continuous with image in Ω such that

$$
\begin{aligned}
h(x, 0) & =\gamma_{1}(x) \\
h(x, 1) & =\gamma_{2}(x) \\
h(0, y) & =\gamma_{1}(0) \\
h(1, y) & =\gamma_{1}(1) .
\end{aligned}
$$

Definition. A closed path has $\gamma(0)=\gamma(1)$.
Definition. A simple path is 1-1 as a function.
Note. Being homotopic depends on Ω.

Definition. Integrals along paths are defined as you'd expect:

$$
\int_{\gamma} f(z) d z=\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Complex analysis is very rigid. Another important example of this is
Theorem 5. If f is analytic on Ω and γ_{1}, γ_{2} are homotopic in Ω then

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

Theorem 6 (Cauchy's residue theorem). Let $h(z)$ be meromorphic (i.e., holomorphic except possibly for finitely many poles) in Ω and let λ be a positively oriented simple closed path in Ω. Let \mathcal{S} be the set of poles of h inside the region enclosed by λ. Then

$$
\frac{1}{2 \pi i} \int_{\lambda} h(z) d z=\sum_{s \in \mathcal{S}} \operatorname{Res}_{s} h
$$

where $\operatorname{Res}_{s} h$ is the $\left[(z-s)^{-1}\right]$ in a Laurent expansion of h around s.
Proof. (For just 1 pole at 0). So

$$
h(z)=\sum_{n=-I}^{\infty} h_{n} z^{n}
$$

then

$$
\int_{\lambda} h(z) d z=\int_{\substack{\lambda \\ n \neq-I \\ n \neq-1}} h_{n} z^{n} d z+h_{-1} \int_{\lambda} \frac{d z}{z}
$$

and for $n \neq-1$,

$$
\begin{aligned}
h_{n} \int_{\lambda} z^{n} d z & =h_{n} \int_{0}^{1} e^{2 \pi i n t} 2 \pi i e^{2 \pi i t} d t, \quad \text { letting } \lambda(t)=e^{2 \pi i t} \\
& =2 \pi i h_{n} \int_{0}^{1} e^{2 \pi i t(n+1)} d t \\
& =0
\end{aligned}
$$

but

$$
\begin{aligned}
\int_{\lambda} \frac{d z}{z} & =\int_{0}^{1} e^{-2 \pi i t} 2 \pi i e^{2 \pi i t} d t \\
& =2 \pi i \cdot 1
\end{aligned}
$$

So $\int_{\lambda} h(z) d z=2 \pi i h_{-1}$.
Theorem 7 (Cauchy's coefficient formula). Let $f(z)$ be analytic in a region Ω containing 0. Let λ be a positively oriented simple closed path in Ω. Then

$$
\left[z^{n}\right] f(z)=\frac{1}{2 \pi i} \int_{\lambda} f(z) \frac{d z}{z^{n+1}}
$$

Proof. Write

$$
f(z)=\sum_{\ell=0}^{\infty} f_{\ell} z^{\ell}
$$

then

$$
\frac{f(z)}{z^{n+1}}=\sum_{\ell=-n-1}^{\infty} f_{\ell+n+1} z^{\ell}
$$

and so the residue is f_{n}, so the result is an application of Cauchy's residue theorem.

3 Transfer Theorems

Now we can use this to get a nice transfer theorem.
Definition. A delta neighbourhood of ρ is a region as illustrated

Note. Stirling's formula (with the constant) says for $\alpha \in \mathbb{R} \backslash \mathbb{Z}$

$$
\left[x^{n}\right](\rho-x)^{\alpha} \sim \frac{\rho^{\alpha}}{\Gamma(-\alpha)} \rho^{-n} n^{-\alpha-1} .
$$

Theorem 8 (Transfer theorem of Flajolet and Odlyzko). Let $0<\rho<\infty$ and suppose f is analytic on $\Delta-\rho$ with Δ a delta neighbourhood of ρ and $f(x) \sim K(\rho-x)^{\alpha}$ as $x \rightarrow \rho$ in Δ with $\alpha \in \mathbb{R} \backslash \mathbb{Z}$, then

$$
\begin{aligned}
{\left[x^{n}\right] f(x) } & \sim\left[x^{n}\right] K(\rho-x)^{\alpha} \\
& \sim \frac{K \rho^{\alpha}}{\Gamma(-\alpha)} \rho^{-n} n^{-\alpha-1}
\end{aligned}
$$

Sketch of proof. Use the following contour:

Write

$$
\gamma= \begin{cases}\gamma_{1}=\left\{x:|x-\rho|=\frac{1}{n},|\arg (x-\rho)| \geq \theta\right\} & \text { inner circle } \\ \gamma_{2}=\left\{x: \frac{1}{n} \leq|x-\rho|,|x| \leq \rho+\eta, \arg (x-\rho)=\theta\right\} & \text { straight piece } \\ \gamma_{3}=\{x:|x|=\rho+\eta,|\arg (x-\rho)| \geq \theta\} & \text { outer circle } \\ \gamma_{4}=\left\{x: \frac{1}{n} \leq|x-\rho|,|x| \leq \rho+\eta, \arg (x-\rho)=-\theta\right\} & \text { straight piece }\end{cases}
$$

Wlog scale so $\rho=1$. Now bound each piece:

- γ_{1} bound by (length of path)(max of integrand)
- γ_{2}, γ_{4} are tricky ones, like Γ-function integral
- γ_{3} easy, as f bounded so only care about $\int \frac{1}{z^{n+1}}$

Note. If there are >1 singularities on the circle of convergence, but only finitely many, we can give the same argument using the following contour (simply add more keyholes) to get the same result:

References

[1] Jason P. Bell, Stanley N. Burris, and Karen A. Yeats. Counting rooted trees: the universal law $t(n) \sim C \rho^{-n} n^{-3 / 2}$. Electron. J. Combin., 13(1):Research Paper 63, 64 pp. (electronic), 2006.
[2] Philippe Flajolet and Robert Sedgewick. IV. 2 VI.3. In Analytic combinatorics, pages xiv+810. Cambridge University Press, Cambridge, 2009.

